Python Data Cleaning Cookbook
Key Features
- Get well-versed with various data cleaning techniques to reveal key insights
- Manipulate data of different complexities to shape them into the right form as per your business needs
- Clean, monitor, and validate large data volumes to diagnose problems before moving on to data analysis
Book Description
Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You’ll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources.
Then, the book teaches you how to manipulate data to get it into a useful form. You’ll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you’ve identified. Moving on, you’ll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you’ll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you’ll build functions and classes that you can reuse without modification when you have new data.
نقد و بررسیها0
هنوز بررسیای ثبت نشده است.