Parameterized Algorithms Softcover reprint of the original
This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way.
The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presents complexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds.
All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
About the Author
Dr. Marek Cygan is an assistant professor at the Institute of Informatics of the University of Warsaw, Poland. His research areas include fixed parameter tractability, approximation algorithms, and exact exponential algorithms.
Prof. Fedor V. Fomin is a professor of algorithms in the Dept. of Informatics of the University of Bergen, Norway. His research interests are largely in the areas of algorithmsand combinatorics, in particular: parameterized complexity, algorithms, and kernelization; exact (exponential time) algorithms; graph algorithms, in particular algorithmic graph minors; graph coloring and different modifications; graph widths parameters (treewidth, branchwidth, clique-width, etc.); and pursuit-evasion and search problems.
نقد و بررسیها0
هنوز بررسیای ثبت نشده است.