سبد خرید
0

هیچ محصولی در سبد خرید نیست.

حساب کاربری

پشتیبان 99004600919

پشتیبانی

18%

Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition

کتاب Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition

خرید کتاب زبان اصلی | کاغذ تحریر | سایز اصلی کتاب | چاپ سیاه و سفید | صحافی جلد نرم

 

نویسندگان شهود هندسی و تفکر الگوریتمی را در اولویت قرار می دهند و جزئیات را در مورد تمام پیش نیازهای اساسی ریاضی گنجانده اند تا راهی تازه و در دسترس برای یادگیری ارائه دهند. کاربردهای عملی با نمونه‌هایی از رشته‌هایی از جمله بینایی کامپیوتر، پردازش زبان طبیعی، اقتصاد، علوم اعصاب، سیستم‌های توصیه‌کننده، فیزیک و زیست‌شناسی مورد تاکید قرار گرفته‌اند.

قیمت اصلی ۷۱۰,۰۰۰ تومان بود.قیمت فعلی ۵۸۰,۰۰۰ تومان است.

سیمی‌ کتاب‌ها به صورت رایگان!

کافیست در بخش توضیحات سبد خرید درخواست دهید.

موجود در انبار
✅ قیمت منصفانه به نسبت کیفیت بالای محصولات
✅گارانتی اصالت و ضمانت سلامت فیزیکی کتاب ها
✅ ارسال با بسته بندی مقاوم در کمترین زمان ممکن
✅ قیمت های به روز و عدم اتمام موجودی کتاب ها
نقد و بررسی اجمالیکتاب Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition
With its intuitive yet rigorous approach to machine learning, this text provides students with the fundamental knowledge and practical tools needed to conduct research and build data-driven products.
The authors prioritize geometric intuition and algorithmic thinking, and include detail on all the essential mathematical prerequisites, to offer a fresh and accessible way to learn. Practical applications are emphasized, with examples from disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology.
Over 300 color illustrations are included and have been meticulously designed to enable an intuitive grasp of technical concepts, and over 100 in-depth coding exercises (in Python) provide a real understanding of crucial machine learning algorithms. A suite of online resources including sample code, data sets, interactive lecture slides, and a solutions manual are provided online, making this an ideal text both for graduate courses on machine learning and for individual reference and self-study.

Review

‘An excellent book that treats the fundamentals of machine learning from basic principles to practical implementation. The book is suitable as a text for senior-level and first-year graduate courses in engineering and computer science. It is well organized and covers basic concepts and algorithms in mathematical optimization methods, linear learning, and nonlinear learning techniques. The book is nicely illustrated in multiple colors and contains numerous examples and coding exercises using Python.’ John G. Proakis, University of California, San Diego

‘Some machine learning books cover only programming aspects, often relying on outdated software tools; some focus exclusively on neural networks; others, solely on theoretical foundations; and yet more books detail advanced topics for the specialist. This fully revised and expanded text provides a broad and accessible introduction to machine learning for engineering and computer science students. The presentation builds on first principles and geometric intuition, while offering real-world examples, commented implementations in Python, and computational exercises. I expect this book to become a key resource for students and researchers.’ Osvaldo Simeone, Kings College London

‘This book is great for getting started in machine learning. It builds up the tools of the trade from first principles, provides lots of examples, and explains one thing at a time at a steady pace. The level of detail and runnable code show what’s really going when we run a learning algorithm.’ David Duvenaud, University of Toronto

Book Description

An intuitive approach to machine learning detailing the key concepts needed to build products and conduct research. Featuring color illustrations, real-world examples, practical coding exercises, and an online package including sample code, data sets, lecture slides, and solutions. It is ideal for graduate courses, reference, and self-study.

‘This book covers various essential machine learning methods (e.g., regression, classification, clustering, dimensionality reduction, and deep learning) from a unified mathematical perspective of seeking the optimal model parameters that minimize a cost function. Every method is explained in a comprehensive, intuitive way, and mathematical understanding is aided and enhanced with many geometric illustrations and elegant Python implementations.’ Kimiaki Sihrahama, Kindai University, Japan

‘Books featuring machine learning are many, but those which are simple, intuitive, and yet theoretical are extraordinary ‘outliers’. This book is a fantastic and easy way to launch yourself into the exciting world of machine learning, grasp its core concepts, and code them up in Python or Matlab. It was my inspiring guide in preparing my ‘Machine Learning Blinks’ on my BASIRA YouTube channel for both undergraduate and graduate levels.’ Islem Rekik, Director of the Brain And SIgnal Research and Analysis (BASIRA) Laboratory

About the Author

Jeremy Wattreceived his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches machine learning, deep learning, mathematical optimization, and reinforcement learning at Northwestern University, Illinois.

Reza Borhanireceived his Ph.D. in Electrical Engineering from Northwestern University, Illinois, and is now a machine learning consultant and educator. He teaches a variety of courses in machine learning and deep learning at Northwestern University, Illinois.

Aggelos K. Katsaggelos is the Joseph Cummings Professor at Northwestern University, Illinois, where he heads the Image and Video Processing Laboratory. He is a Fellow of Institute of Electrical and Electronics Engineers (IEEE), SPIE, the European Association for Signal Processing (EURASIP), and The Optical Society (OSA) and the recipient of the IEEE Third Millennium Medal (2000).

Product details

  • Hardcover: 594 pages
  • Publisher: Cambridge University Press; 2 edition (March 12, 2020)
  • Language: English
  • ISBN-10: 1108480721
  • ISBN-13: 978-۱۱۰۸۴۸۰۷۲۷
  • Product Dimensions: 7.۲ x 1.1 x 10 inches
  • # Information Theory
نمایش ادامه مطلب
برچسب:
نظرات کاربرانکتاب Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition
نقد و بررسی‌ها0
  • جدیدترین
  • مفیدترین
  • دیدگاه خریداران

هنوز بررسی‌ای ثبت نشده است.

5
4
3
2
1
0.0

بر اساس 0 دیدگاه

نظر خود را در مورد این محصول بنویسید ... افزودن دیدگاه
پرسش و پاسخکتاب Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition

هیچ پرسشی یافت نشد

    برای ثبت پرسش، لازم است ابتدا وارد حساب کاربری خود شوید

    نقد و بررسیکتاب Machine Learning Refined : Foundations Algorithms and Applications 2nd Edition
    افزودن به سبد خرید
    مقایسه محصولات

    0 محصول

    مقایسه محصول
    مقایسه محصول
    مقایسه محصول
    مقایسه محصول